746 research outputs found

    Demonstration of an Ice Contamination Effects Flight Training Device

    Get PDF
    The development of a piloted flight simulator called the Ice Contamination Effects Flight Training Device (ICEFTD) was recently completed. This device demonstrates the ability to accurately represent an iced airplane s flight characteristics and is utilized to train pilots in recognizing and recovering from aircraft handling anomalies that result from airframe ice formations. The ICEFTD was demonstrated at three recent short courses hosted by the University of Tennessee Space Institute. It was also demonstrated to a group of pilots at the National Test Pilot School. In total, eighty-four pilots and flight test engineers from industry and the regulatory community spent approximately one hour each in the ICEFTD to get a "hands on" lesson of an iced airplane s reduced performance and handling qualities. Additionally, pilot cues of impending upsets and recovery techniques were demonstrated. The purpose of this training was to help pilots understand how ice contamination affects aircraft handling so they may apply that knowledge to the operations of other aircraft undergoing testing and development. Participant feedback on the ICEFTD was very positive. Pilots stated that the simulation was very valuable, applicable to their occupations, and provided a safe way to explore the flight envelope. Feedback collected at each demonstration was also helpful to define additional improvements to the ICEFTD; many of which were then implemented in subsequent demonstration

    Feasibility study of the solar scientific instruments for Spacelab/Orbiter

    Get PDF
    The feasibility and economics of mounting and operating a set of solar scientific instruments in the backup Skylab Apollo Telescope Mount (ATM) hardware was evaluated. The instruments used as the study test payload and integrated into the ATM were: the Solar EUV Telescope/Spectrometer; the Solar Active Region Observing Telescope; and the Lyman Alpha White Light Coronagraph. The backup ATM hardware consists of a central cruciform structure, called the "SPAR', a "Sun End Canister' and a "Multiple Docking Adapter End Canister'. Basically, the ATM hardware and software provides a structural interface for the instruments; a closely controlled thermal environment; and a very accurate attitude and pointing control capability. The hardware is an identical set to the hardware that flow on Skylab

    Rail-freight crew scheduling with a genetic algorithm

    Get PDF
    peer reviewedThis article presents a novel genetic algorithm designed for the solution of the Crew Scheduling Problem (CSP) in the rail-freight industry. CSP is the task of assigning drivers to a sequence of train trips while ensuring that no driver’s schedule exceeds the permitted working hours, that each driver starts and finishes their day’s work at the same location, and that no train routes are left without a driver. Real-life CSPs are extremely complex due to the large number of trips, opportunities to use other means of transportation, and numerous government regulations and trade union agreements. CSP is usually modelled as a set-covering problem and solved with linear programming methods. However, the sheer volume of data makes the application of conventional techniques computationally expensive, while existing genetic algorithms often struggle to handle the large number of constraints. A genetic algorithm is presented that overcomes these challenges by using an indirect chromosome representation and decoding procedure. Experiments using real schedules on the UK national rail network show that the algorithm provides an effective solution within a faster timeframe than alternative approaches

    Continuous Processing and Efficient in Situ\textit{in Situ} Reaction Monitoring of a Hypervalent Iodine(III) Mediated Cyclopropanation Using Benchtop NMR Spectroscopy

    Get PDF
    Real-time NMR spectroscopy has proven to be a rapid and an effective monitoring tool to study the hypervalent iodine(III) mediated cyclopropanation. With the ever increasing number of new synthetic methods for carbon−carbon bond formation, the NMR in situ\textit{in situ} monitoring of reactions is becoming a highly desirable enabling method. In this study, we have demonstrated the versatility of benchtop NMR using inline and online real-time monitoring methods to access mutually complementary information for process understanding, and we developed new approaches for real-time monitoring addressing challenges associated with better integration into continuous processes.University of Cambridge (Daphne Jackson Fellowship), iCON through CMAC (Grant ID: RG74817), Engineering and Physical Sciences Research Council (Critical Mass grant (Grant ID: EP/K009494K/1), Core Capability grant (Grant ID: EP/K039520/1

    Climate change and stream temperature projections in the Columbia River basin: habitat implications of spatial variation in hydrologic drivers

    Get PDF
    Water temperature is a primary physical factor regulating the persistence and distribution of aquatic taxa. Considering projected increases in air temperature and changes in precipitation in the coming century, accurate assessment of suitable thermal habitats in freshwater systems is critical for predicting aquatic species\u27 responses to changes in climate and for guiding adaptation strategies. We use a hydrologic model coupled with a stream temperature model and downscaled general circulation model outputs to explore the spatially and temporally varying changes in stream temperature for the late 21st century at the subbasin and ecological province scale for the Columbia River basin (CRB). On average, stream temperatures are projected to increase 3.5 °C for the spring, 5.2 °C for the summer, 2.7 °C for the fall, and 1.6 °C for the winter. While results indicate changes in stream temperature are correlated with changes in air temperature, our results also capture the important, and often ignored, influence of hydrological processes on changes in stream temperature. Decreases in future snowcover will result in increased thermal sensitivity within regions that were previously buffered by the cooling effect of flow originating as snowmelt. Other hydrological components, such as precipitation, surface runoff, lateral soil water flow, and groundwater inflow, are negatively correlated to increases in stream temperature depending on the ecological province and season. At the ecological province scale, the largest increase in annual stream temperature was within the Mountain Snake ecological province, which is characterized by migratory coldwater fish species. Stream temperature changes varied seasonally with the largest projected stream temperature increases occurring during the spring and summer for all ecological provinces. Our results indicate that stream temperatures are driven by local processes and ultimately require a physically explicit modeling approach to accurately characterize the habitat regulating the distribution and diversity of aquatic taxa

    In vivo cell tracking with 52Mn PET: Targetry, Separation, and Applications

    Get PDF
    Introduction 52Mn (t½ =5.59 d, β+ = 29.6%, Eβmax = 0.58 MeV) has great potential as a long lived PET isotope for use in cell tracking studies, observation of immunologic response to disease states, or as an alternative to manganese-based MRI contrast agents. Its favorable max positron energy leads to superb imaging resolution, comparable to that of 18F.[1] Manganese is naturally taken up by cells via a multitude of pathways including the divalent metal transporter (DMT1), ZIP8, transferrin receptors (TfR), store-operated Ca2+ channels (SOC-Ca2+), and ionotropic glutamate receptor Ca2+ channels (GluR).[2] These natural transport mechanisms make 52Mn an attractive isotope for applications necessitating non-perturbative cell uptake. In particular, cell tracking is critical to the development and translation of stem cell therapies in regenerative medicine. Alternative-ly, 52Mn could be used in immunotherapy techniques such as adoptive cellular therapy (ACT) to evaluate the ability of external immune cells to reach their intended target. Material and Methods 52Mn was produced by natCr(p,x)52Mn using 16 MeV protons. The average thick target production yield was 0.23 mCi/µA-h with less than 0.25% co-production of 54Mn. Small amounts of 51Cr were observed in the target, but were absent from the radiochemically separated product. Target construction consisted of a water jet cooled chromium disc (3/4” diameter, 0.4” thick). Targets were purchased from Kamis Inc, and are 99.95% pure. Targets withstood beam currents of 30 µA with no visible aberration. Chromium targets were etched by concentrated HCl following bombardment. Mn2+ ions were extracted from 9M HCl to 0.8M trioctylamine in cyclohexane leaving the bulk chromium in the aqueous phase. After isolating the organic phase, 0.001M NH4OH was used to back-extract the Mn2+ ions to aqueous phase. This purification cycle was conducted a total of three times for each 52Mn production. Results and Conclusion For a starting bulk chromium mass of 456 ± 1 mg, a post-separation chromium mass of 5.35 ± 0.04 ng was measured by microwave plasma atomic emission spectrometry (MP-AES). This mass reduction corresponds to an average separation factor of 440 for a single purification cycle. Each purification cycle had a 52Mn recovery efficiency of 73 ± 7 % (n = 6), resulting in an overall separation efficiency of approximately 35 %. These efficiencies and separation factors agree reasonably well with the work conducted by Lahiri et. al.[3] Prior to use, the product was passed through a C-18 Sep-Pak to remove any residual organic phase. After four target irradiations and etchings, some pitting became noticeable on the target face. These have not yet compromised the o-ring seal with the target deplater, but it is possible that target replacement after every 6–9 52Mn productions will be necessary moving forward. Following the successful separation of 52Mn from chromium, in vitro experiments were conducted to demonstrate the uptake of 52Mn by human stem cells and mouse tumor cells. A linear uptake response was observed as a function of the amount of activity exposed to the cells for both cell models. These experiments have shown great promise for 52Mn as a long-lived PET isotope in cell tracking studies. Details will be presented

    Laser vision : lidar as a transformative tool to advance critical zone science

    Get PDF
    © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hydrology and Earth System Sciences 19 (2015): 2881-2897, doi:10.5194/hess-19-2881-2015.Observation and quantification of the Earth's surface is undergoing a revolutionary change due to the increased spatial resolution and extent afforded by light detection and ranging (lidar) technology. As a consequence, lidar-derived information has led to fundamental discoveries within the individual disciplines of geomorphology, hydrology, and ecology. These disciplines form the cornerstones of critical zone (CZ) science, where researchers study how interactions among the geosphere, hydrosphere, and biosphere shape and maintain the "zone of life", which extends from the top of unweathered bedrock to the top of the vegetation canopy. Fundamental to CZ science is the development of transdisciplinary theories and tools that transcend disciplines and inform other's work, capture new levels of complexity, and create new intellectual outcomes and spaces. Researchers are just beginning to use lidar data sets to answer synergistic, transdisciplinary questions in CZ science, such as how CZ processes co-evolve over long timescales and interact over shorter timescales to create thresholds, shifts in states and fluxes of water, energy, and carbon. The objective of this review is to elucidate the transformative potential of lidar for CZ science to simultaneously allow for quantification of topographic, vegetative, and hydrological processes. A review of 147 peer-reviewed lidar studies highlights a lack of lidar applications for CZ studies as 38 % of the studies were focused in geomorphology, 18 % in hydrology, 32 % in ecology, and the remaining 12 % had an interdisciplinary focus. A handful of exemplar transdisciplinary studies demonstrate lidar data sets that are well-integrated with other observations can lead to fundamental advances in CZ science, such as identification of feedbacks between hydrological and ecological processes over hillslope scales and the synergistic co-evolution of landscape-scale CZ structure due to interactions amongst carbon, energy, and water cycles. We propose that using lidar to its full potential will require numerous advances, including new and more powerful open-source processing tools, exploiting new lidar acquisition technologies, and improved integration with physically based models and complementary in situ and remote-sensing observations. We provide a 5-year vision that advocates for the expanded use of lidar data sets and highlights subsequent potential to advance the state of CZ science.The workshop forming the impetus for this paper was funded by the National Science Foundation (EAR 1406031). Additional funding for the workshop and planning was provided to S. W. Lyon by the Swedish Foundation for International Cooperation in Research and Higher Education (STINT grant no. 2013-5261). A. A. Harpold was supported by an NSF fellowship (EAR 1144894)

    Active Brownian Particles. From Individual to Collective Stochastic Dynamics

    Full text link
    We review theoretical models of individual motility as well as collective dynamics and pattern formation of active particles. We focus on simple models of active dynamics with a particular emphasis on nonlinear and stochastic dynamics of such self-propelled entities in the framework of statistical mechanics. Examples of such active units in complex physico-chemical and biological systems are chemically powered nano-rods, localized patterns in reaction-diffusion system, motile cells or macroscopic animals. Based on the description of individual motion of point-like active particles by stochastic differential equations, we discuss different velocity-dependent friction functions, the impact of various types of fluctuations and calculate characteristic observables such as stationary velocity distributions or diffusion coefficients. Finally, we consider not only the free and confined individual active dynamics but also different types of interaction between active particles. The resulting collective dynamical behavior of large assemblies and aggregates of active units is discussed and an overview over some recent results on spatiotemporal pattern formation in such systems is given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte
    corecore